Abstract:
The L-space conjecture has been in the news a lot lately. It predicts a surprising relationship between the algebraic, geometric, and Floer-homological properties of a 3-manifold Y. In particular, it predicts exactly which 3-manifolds admit a "taut foliation". In this talk, I'll discuss some of my past and forthcoming work investigating these connections. In particular, I'll discuss a strategy for building taut foliations manifolds obtained by Dehn surgery along knots realized as closures of "positive braids". As an application, I will show how taut foliations can be used to obstruct positivity for cable knots. All are welcome; no background in foliation or Floer homology theories will be assumed.