Nicht eingeloggt (Login)

Kanal

Quantum Gravity I: Canonical General Relativity

Norbert Bodendorfer
QG I: 0.1 - Aim and content
QG I: 0.1 - Aim and content

Norbert Bodendorfer
QG I: 0.2 - Suggested literature
QG I: 0.2 - Suggested literature

Norbert Bodendorfer
QG I: 1.1 - Motivations for studying quantum gravity
QG I: 1.1 - Motivations for studying quantum gravity

Norbert Bodendorfer
QG I: 1.2 - Possible scenarios for observations
QG I: 1.2 - Possible scenarios for observations

Norbert Bodendorfer
QG I: 1.3 - Approaches to quantum gravity
QG I: 1.3 - Approaches to quantum gravity

Norbert Bodendorfer
QG I: 2.1.1 - Legendre transform and equations of motion
QG I: 2.1.1 - Legendre transform and equations of motion

Norbert Bodendorfer
QG I: 2.1.2 - Phase space and Poisson brackets
QG I: 2.1.2 - Phase space and Poisson brackets

Norbert Bodendorfer
QG I: 2.2.1 - Legendre transform
QG I: 2.2.1 - Legendre transform

Norbert Bodendorfer
QG I: 2.2.2 - Stability algorithm
QG I: 2.2.2 - Stability algorithm

Norbert Bodendorfer
QG I: 2.2.3 - Gauge transformations
QG I: 2.2.3 - Gauge transformations

Norbert Bodendorfer
QG I: 2.2.4 - Field theory
QG I: 2.2.4 - Field theory

Norbert Bodendorfer
QG I: 2.2.5 - Example: Maxwell theory = U(1) gauge theory
QG I: 2.2.5 - Example: Maxwell theory = U(1) gauge theory

Norbert Bodendorfer
QG I: 2.3.1 - Regularity conditions
QG I: 2.3.1 - Regularity conditions

Norbert Bodendorfer
QG I: 2.3.2 - First and second class split
QG I: 2.3.2 - First and second class split

Norbert Bodendorfer
QG I: 2.3.3 - Small excursion: quantisation
QG I: 2.3.3 - Small excursion: quantisation

Norbert Bodendorfer
QG I: 2.3.4 - The Dirac bracket
QG I: 2.3.4 - The Dirac bracket

Norbert Bodendorfer
QG I: 2.3.5 - Gauge fixing
QG I: 2.3.5 - Gauge fixing

Norbert Bodendorfer
QG I: 2.3.6 - Degrees of freedom
QG I: 2.3.6 - Degrees of freedom

Norbert Bodendorfer
QG I: 2.3.7 - Gauge invariant functions
QG I: 2.3.7 - Gauge invariant functions

Norbert Bodendorfer
QG I: 2.3.8 - Gauge unfixing
QG I: 2.3.8 - Gauge unfixing

Norbert Bodendorfer
QG I: 3.1 - Parametrised systems
QG I: 3.1 - Parametrised systems

Norbert Bodendorfer
QG I: 3.2 - General examples
QG I: 3.2 - General examples

Norbert Bodendorfer
QG I: 4.0 - Motivation and overview
QG I: 4.0 - Motivation and overview

Norbert Bodendorfer
QG I: 4.1 - Manifolds
QG I: 4.1 - Manifolds

Norbert Bodendorfer
QG I: 4.10 - Physical effects
QG I: 4.10 - Physical effects

Norbert Bodendorfer
QG I: 4.11 - Cosmology
QG I: 4.11 - Cosmology

Norbert Bodendorfer
QG I: 4.2.1 - Vectors
QG I: 4.2.1 - Vectors

Norbert Bodendorfer
QG I: 4.2.2 - Covectors
QG I: 4.2.2 - Covectors

Norbert Bodendorfer
QG I: 4.3 - Metrics and tensors
QG I: 4.3 - Metrics and tensors

Norbert Bodendorfer
QG I: 4.4 - Geodesics
QG I: 4.4 - Geodesics

Norbert Bodendorfer
QG I: 4.5 - Integration
QG I: 4.5 - Integration

Norbert Bodendorfer
QG I: 4.6 - Covariant derivatives
QG I: 4.6 - Covariant derivatives

Norbert Bodendorfer
QG I: 4.7 - Lie derivatives
QG I: 4.7 - Lie derivatives

Norbert Bodendorfer
QG I: 4.8 - Riemann tensor
QG I: 4.8 - Riemann tensor

Norbert Bodendorfer
QG I: 4.9 - Action and field equations
QG I: 4.9 - Action and field equations

Norbert Bodendorfer
QG I: 5.0 - Motivation and outline
QG I: 5.0 - Motivation and outline

Norbert Bodendorfer
QG I: 5.1 - Hypersurface deformations
QG I: 5.1 - Hypersurface deformations

Norbert Bodendorfer
QG I: 5.2.1 - The ADM formulation: strategy
QG I: 5.2.1 - The ADM formulation: strategy

Norbert Bodendorfer
QG I: 5.2.2 - Fundamental forms
QG I: 5.2.2 - Fundamental forms

Norbert Bodendorfer
QG I: 5.2.3 - Legendre transform
QG I: 5.2.3 - Legendre transform

Norbert Bodendorfer
QG I: 5.3 - Phase space extension
QG I: 5.3 - Phase space extension

Norbert Bodendorfer
QG I: 5.4 - Connection variables
QG I: 5.4 - Connection variables