Nicht eingeloggt (Login)

Kanal

Quantum Gravity I: Canonical General Relativity

QG I: 0.1 - Aim and content
Norbert Bodendorfer
QG I: 0.1 - Aim and content

QG I: 0.2 - Suggested literature
Norbert Bodendorfer
QG I: 0.2 - Suggested literature

QG I: 1.1 - Motivations for studying quantum gravity
Norbert Bodendorfer
QG I: 1.1 - Motivations for studying quantum gravity

QG I: 1.2 - Possible scenarios for observations
Norbert Bodendorfer
QG I: 1.2 - Possible scenarios for observations

QG I: 1.3 - Approaches to quantum gravity
Norbert Bodendorfer
QG I: 1.3 - Approaches to quantum gravity

QG I: 2.1.1 - Legendre transform and equations of motion
Norbert Bodendorfer
QG I: 2.1.1 - Legendre transform and equations of motion

QG I: 2.1.2 - Phase space and Poisson brackets
Norbert Bodendorfer
QG I: 2.1.2 - Phase space and Poisson brackets

QG I: 2.2.1 - Legendre transform
Norbert Bodendorfer
QG I: 2.2.1 - Legendre transform

QG I: 2.2.2 - Stability algorithm
Norbert Bodendorfer
QG I: 2.2.2 - Stability algorithm

QG I: 2.2.3 - Gauge transformations
Norbert Bodendorfer
QG I: 2.2.3 - Gauge transformations

QG I: 2.2.4 - Field theory
Norbert Bodendorfer
QG I: 2.2.4 - Field theory

QG I: 2.2.5 - Example: Maxwell theory = U(1) gauge theory
Norbert Bodendorfer
QG I: 2.2.5 - Example: Maxwell theory = U(1) gauge theory

QG I: 2.3.1 - Regularity conditions
Norbert Bodendorfer
QG I: 2.3.1 - Regularity conditions

QG I: 2.3.2 - First and second class split
Norbert Bodendorfer
QG I: 2.3.2 - First and second class split

QG I: 2.3.3 - Small excursion: quantisation
Norbert Bodendorfer
QG I: 2.3.3 - Small excursion: quantisation

QG I: 2.3.4 - The Dirac bracket
Norbert Bodendorfer
QG I: 2.3.4 - The Dirac bracket

QG I: 2.3.5 - Gauge fixing
Norbert Bodendorfer
QG I: 2.3.5 - Gauge fixing

QG I: 2.3.6 - Degrees of freedom
Norbert Bodendorfer
QG I: 2.3.6 - Degrees of freedom

QG I: 2.3.7 - Gauge invariant functions
Norbert Bodendorfer
QG I: 2.3.7 - Gauge invariant functions

QG I: 2.3.8 - Gauge unfixing
Norbert Bodendorfer
QG I: 2.3.8 - Gauge unfixing

QG I: 3.1 - Parametrised systems
Norbert Bodendorfer
QG I: 3.1 - Parametrised systems

QG I: 3.2 - General examples
Norbert Bodendorfer
QG I: 3.2 - General examples

QG I: 4.0 - Motivation and overview
Norbert Bodendorfer
QG I: 4.0 - Motivation and overview

QG I: 4.1 - Manifolds
Norbert Bodendorfer
QG I: 4.1 - Manifolds

QG I: 4.10 - Physical effects
Norbert Bodendorfer
QG I: 4.10 - Physical effects

QG I: 4.11 - Cosmology
Norbert Bodendorfer
QG I: 4.11 - Cosmology

QG I: 4.2.1 - Vectors
Norbert Bodendorfer
QG I: 4.2.1 - Vectors

QG I: 4.2.2 - Covectors
Norbert Bodendorfer
QG I: 4.2.2 - Covectors

QG I: 4.3 - Metrics and tensors
Norbert Bodendorfer
QG I: 4.3 - Metrics and tensors

QG I: 4.4 - Geodesics
Norbert Bodendorfer
QG I: 4.4 - Geodesics

QG I: 4.5 - Integration
Norbert Bodendorfer
QG I: 4.5 - Integration

QG I: 4.6 - Covariant derivatives
Norbert Bodendorfer
QG I: 4.6 - Covariant derivatives

QG I: 4.7 - Lie derivatives
Norbert Bodendorfer
QG I: 4.7 - Lie derivatives

QG I: 4.8 - Riemann tensor
Norbert Bodendorfer
QG I: 4.8 - Riemann tensor

QG I: 4.9 - Action and field equations
Norbert Bodendorfer
QG I: 4.9 - Action and field equations

QG I: 5.0 - Motivation and outline
Norbert Bodendorfer
QG I: 5.0 - Motivation and outline

QG I: 5.1 - Hypersurface deformations
Norbert Bodendorfer
QG I: 5.1 - Hypersurface deformations

QG I: 5.2.1 - The ADM formulation: strategy
Norbert Bodendorfer
QG I: 5.2.1 - The ADM formulation: strategy

QG I: 5.2.2 - Fundamental forms
Norbert Bodendorfer
QG I: 5.2.2 - Fundamental forms

QG I: 5.2.3 - Legendre transform
Norbert Bodendorfer
QG I: 5.2.3 - Legendre transform

QG I: 5.3 - Phase space extension
Norbert Bodendorfer
QG I: 5.3 - Phase space extension

QG I: 5.4 - Connection variables
Norbert Bodendorfer
QG I: 5.4 - Connection variables